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Propagation of extraordinary mode waves in nearly parallel stratified plasmas (magnetic beach
geometry) is investigated. Since these waves are very heavily damped WKB theory is
unreliable and kinetic effects make the problem inherently nonlocal. The resonance region is
treated by a boundary layer expansion which reduces the problem to an integrodifferential
system in one dimension. It is proved analytically that for moderate to high density, waves
incident from the high field side are totally absorbed with no reflected wave. At very low
density some transmission is possible, where the transmission coefficients are being given
correctly by cold plasma theory. Numerical solution of the integrodifferential system shows
that the power deposition profile can differ significantly from that predicted from a local WKB

theory.

l. INTRODUCTION

In this paper we investigate the propagation and absorp-
tion of the extraordinary electron cyclotron mode in plasmas
for which the gradient in magnetic field strength, VB, is
nearly parallel to the magnetic field lines B (i.e., nearly par-
allel stratification). Such a configuration corresponds to
wave damping at a magnetic beach as is found primarily in
magnetic mirror geometry.'” The physics involved is much
different from the situation, extensively studied tokamaks,
where VB and Vn, are nearly perpendicular to B (perpen-
dicular stratification).? Near cyclotron resonance, w = (2.,
where @ = wave frequency and (). = electron cyclotron
frequency, the electron response to the right circular compo-
nent E_ of the wave electric field E is very strong, that is,
J_=0[E_/(w—Q,)]. With perpendicular stratifica-
tion, &, the component on the wave parallel to B, is fixed
whereas the perpendicular component &, varies weakly with
Q. near w=1Q,. Since J must be balanced by
VXVXE = O(k?E) in Maxwell’s equations, the plasma
current shields out the right circular polarized component of
E. In the cold plasma limit, £_ =0 at cyclotron resonance.
As a result, in perpendicularly stratified plasmas cyclotron
damping is a comparatively weak finite temperature effect
caused by Doppler or relativistic broadening of the cyclo-
tron resonance. However, in parallel stratified plasmas %, is
constant while k| becomes very large near @ = (). Thus in
Maxwell’s equations, terms O(kﬁE _) can balance terms
O[E_/(w — Q) ], and the shielding out of £_ does not
occur. As a result, in parallel stratified plasma damping of
cyclotron waves can be very strong, virtually independently
of temperature.

The feature of strong damping appears at all levels of
description. In the cold plasma model the wave fields are
described by a wave equation of the form

VXVXE — (0?*/c¢®)E = (4miw/c)oE, (1)

where o is the usual cold plasma conductivity tensor and we
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have assumed harmonic time dependence for E «ce =’ The
dispersion relation obtained from Eq. (1) for a uniform plas-
ma is of the form

Anj + B(n})ni 4+ C(n}) =0, 2
where

4= —w,/0*)(1 - Q% /0%
and

n = ck/w.

Thus one of the solutions of Eq. (2) for n, (the extraordin-
ary mode root) has a singularity that occurs at ., = o,
independent of n, . For fixed n, there is an associated cutoff,
n, —0, at lower magnetic field, ., <o, given by

() ior = (@0* — 02 [1 — (@2 /0*) /(1 —n})].
(3)
The extraordinary mode propagates on the high magnetic
field side of the cyclotron resonance. As the wave ap-
proaches cyclotron resonance, 7, becomes infinite, the par-
allel phase velocity w/k | vanishes, and the group velocity
turns perpendicular to the magnetic field.

If one assumes the plasma to be purely parallel stratified
alongz [i.e.,, By(x) = 2By(2),n,(x) = n,(z)],then Eq. (1)
reduces to an ordinary differential equation that can be cast
in the standard form of the Budden tunneling problem*

2
[d——Ké(Hﬁ)]V:o, 4)
g’ 3
where £ = wz/c and for small values of w?, /»*, n the quan-
tities k 5 and X,, are given approximately by

(2 — @l /o’ )N}

Ki=1-— : (5)
° 2(1 — 02, /0%)

., @ 1 dB, (1_ (1 - /0®)n} ) 6)
0 _a)f,e B, dé& 2(1 — @, /0°) —n?

The solutions to Eq. (4) can be expressed in terms of Whitta-
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ker functions, and Stokes parameters giving reflection and
transmission coefficients are easily derived. One finds that
for the extraordinary mode incident on the resonance from
the high field side, no reflection occurs and the fraction of
power absorbed is

AP =1—e" "5 (7)

Even for quite modest plasma parameters (e.g., n, = 10'%/
cm®, @ =28 GHz, and L=[(dB/dz)/B]~!'=20 cm as
found in ELMO Bumpy Torus-S (EBT-S*) or TMX-U?),
the absorption coefficient differs from unity by less than
10715, Thus the cold plasma theory predicts complete wave
absorption, and since there is no explicit dissipation mecha-
nism included in the model, the absorption appears to occur
entirely at the point z = 0 where the equation has a regular
singular point. We obtain no information about the spatial
absorption profile.

Additional insight can be gained by examining the loca!/
warm plasma dispersion for k | at fixed k, . For propagation
along B, (i.e., kK, =0) the Maxwellian plasma dispersion
relation takes the simple form

2 = 1 — (0% /Q.) (1/ku, ) Z (), (8)

where v, = (2T./m,)"? & = (0 — Q. )/k v,, and Z(&)
is the plasma dispersion function. Figure 1 shows solutions
of this dispersion relation as a function of 2, /w for param-
eters n, = 10'2/cm?, T, = 300 eV, and w = 27 <28 GHz.
Below the cutoff and well above the cyclotron resonance,
k; =Im{k } =0 and k, =Re{k,} agree with the cold
plasma result. As cyclotron resonance is approached (i.e.,
w — Q. ~k v, ), some energetic particles become able to
satisfy the Doppler shifted resonance condition
v = (0 — Q. )/k and k, begins to increase. At the cyclo-
tron resonance layer, w = Q,, the bulk of the distribution
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FIG. 1. Real and imaginary partsof k vs Q_, /w and z/A, for n, = 10'2/cm?,
/27 = 28 GHz, T, = 300 eV. Magnetic field scale length is L = 12 cm.
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satisfies the Doppler resonance condition and damping is
very strong, k; ~k,.

One can estimate the spatial structure of wave absorp-
tion by assuming geometrical optics and integrating k | (z) as
given by the local warm plasma dispersion relation

E(z)~E exp(z’f dé k, (5)). 9)

Using the plasma parameters listed above and assuming a

linear magnetic field variation, Q. (z) =w(l 4+ 2z/L),

L = 12 cm, one finds that a wave propagating fromz = « is

undamped until z<2.4 cm [i.e., Q. (z)/0=1.2]. Also, 95%

of the incident power is absorbed by z=0.8 cm [i.e,

Q. (2)/w=1.04]. Thus the wave is completely absorbed in

1.6 cm, a length comparable to one free space wavelength,

Ao=1 cm. In this model the wave power at cyclotron reso-
nance z = 0 is down from the incident power by 1075, Of
course this WKB model would not show wave reflection
even if it were actually present.

Although the local warm plasma WKB model gives an
indication of the power dissipation profile and the spatial
structure of E(z), one can, in fact, have little confidence in
its detailed correctness. In the first place, the rapid change in
the plasma dispersive properties on the 4, space scale sug-
gests the possible appearance of wave reflection and indi-
cates the need for a full wave solution for the fields. In the
second place, the plasma current in the local dispersion
relation is calculated assuming that particles streaming
along magnetic field lines see a wave field of the form
Exexpli(kvy — w)t], where k| and v are constant. How-
ever, Fig. 1 shows that k varies significantly on the 4, scale
and casts doubt on the very concept of a local wavenumber, a
fundamentally geometrical optics concept. Also in reality v
varies in parallel stratified plasmas due to the uVB force. In
this paper we present a self-consistent solution of the Vla-
sov—-Maxwell system avoiding a WKB approximation for
the wave fields and including the nonlocal character of the
plasma current. A similar analysis has been carried out by
Timofeev and Chulkov® for the case that VB makes a sub-
stantial angle with B. In this case £_ remains small, O(Ve/
¢), and the damping is comparatively weak. However, a non-
local Green’s function was found identical to the one that
appears in our analysis.

Our analysis confirms the result of cold plasma full
wave theory that for high field incidence, no wave is reflect-
ed, and for moderate to high density, the incident power is
completely absorbed. Furthermore, we are able to prove
analytically that for a class of distribution functions satisfy-
ing certain assumptions of analytical properties and behav-
ior at infinity in v, no wave is reflected and the transmitted
wave (which exists only for very low density) is the same as
given by the cold plasma model. Numerical solution of the
integrodifferential equation shows that for some cases of in-
terest the wave absorption profile differs significantly from
that predicted by finite temperature WKB theory [Eq. (9)].
Even though the power is totally absorbed in a short dis-
tance, the shape of the absorption profile is of considerable
practical importance. This is because the energy gain and
velocity space diffusion experienced by a particle of given
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energy and pitch angle are roughly proportional to |E_|?
evaluated at the point along the field line Z, at which the
Doppler resonance condition is satisfied,

vy (Z,) = [a) - Q. (Z) ]/ku (Z,). (109)

Thus, for example, large v, particles that are resonant at
large Z, are strongly scattered by the full, undamped wave
field, whereas small v particles that are resonant near
Q. (Z,) = w experience only the damped wave fields and
are not heated. Correct calculation of £_ (z) is essential to
correct calculation of quasilinear diffusion.

Il. WAVE EQUATION IN THE RESONANCE LAYER

We start from the Vlasov equation linearized about a
zeroth-order distribution function isotropic in velocity space

oF

e e
iof + vVWf+ —vXByV f= — —Ev , (1)
f 4 mc VoS m /2 (
and from Maxwell’s equations written as
2 I3
< VX(VXE) —E= — 27 ffvd, (12)
) @

where we have assumed time harmonic dependence of all
linearized variables of the form exp (iw?), and where the cau-
sality condition requires that the solution be extendible into
the domain Re(iw) >0 or Im w <0 and that the solution
tend to zero as Im w — — . For simplicity we assume an
equilibrium magnetic field with only X and 2 components

B, = B,(x,z) [X sin a(x,z) + Z cos a(x,z)]
= Bub,(x,2). (13)

We assume that all equilibrium quantities vary slowly with
respect to the free space wavelength ¢/w. Thus geometrical
optics applies except in the immediate vicinity of the funda-
mental cyclotron resonance where wave absorption is
strong.

The assumption that all equilibrium quantities vary
slowly in space relative to the free space wavelength may be
given explicitly by the requirement that any equilibrium
function of space, say c(x,p,z), is of the form

(14)

where & is the usual geometrical optics small expansion pa-
rameter. We specify § quite specifically shortly. We must
assume that the first few derivatives of B(x,y,z) with respect
to x, ¥, and z are all of order 1 in § and in any other small
parameters we introduce. Qur analysis depends on the pres-
ence of one other small parameter, namely the ratio of the
mean electron thermal speed to the speed of light

c(x,y,z) = C(6xw/c,8yew/c,0zw/c),

(15)

Our earlier study of geometrical optics in plasma at electron
cyclotron frequencies®’ required that € be small as well as §.
Here we shall be forced to make specific assumptions relat-
ing € and § in order to find nontrivial resonance layer ap-
proximations to the system (11) and (12). We consider two
distinct cases. In the first we assume that the ratio of the
electron plasma frequency, @, , to the electron cyclotron
frequency, ., is zero order in both € and 4. In the second
low density case, which includes Budden tunneling, we as-
sume @, /. small. The requirement of nontrivial reso-

€ =0v,/cC.
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nance layer equations finally imposes specific scaling rela-
tionships between ¢, §, and w,. /(.. Beyond the range of
these relationships our treatment most likely fails. Before we
start the resonance layer expansion, it is convenient to recast
the Vlasov equation in a different form in dimensionless vari-
ables. Our choice of space coordinates, nondimensional rela-
tive to the free space wavelength—as opposed to characteris-
tic equilibrium gradient length—implies that we have
already partially completed the stretching of variables typi-
cal of an inner expansion in a boundary layer theory.
Further, in our coordinates we generally expect geometrical
optics expansions of the form

E~E,(6x,69,62)exp[iP(%,7,2) ],

where the space variables are X, §, and Z measured in units of
the inverse free space wave number. Specifically, we intro-
duce nondimensional space and velocity space variables by
the definitions

x = (¢c/w)X, (16)

V=141, (17)
and modified distribution functions g(%,u), G(1#%/2),

F(v)dv = nG(u)dn, (18)
where

JG(u)du-—- 1, (19)

4mreF(v)dv = v, g(u)du, (20)

and n, is the local electron number density. The original
Vlasov—-Maxwell system (11) and (12) becomes

. S e aG
ing + eo(uXV)g + —uXByV, g = — ? E- ,
g +eo(ux Vg +——uxBeV.g = — ol Bu "7
(21)
and
Vx(?xE)—EzfduMsL. (22)
(iw) (iw)

We have effectively assumed in (18) that the equilibrium
distribution function is spatially independent. This assump-
tion is clearly not essential but neither is it restrictive since
our analysis is finally localized to the neighborhood of a
point on the resonance surface. We take G(u) to be the dis-
tribution function at that point.

Proceeding similarly to the analysis of Ref. 8, we intro-
duce components of u parallel to and perpendicular to b, by
the definitions

u=u”130+ul cosqﬂ(jixl;()) + u, (sin @), (23)

where ¢ is the angle of the gyrophase and we expand gin a
Fourier series in ¢:

g= Y 8n(ujupx)e™? (24)
When we change the independent variables in the Vlasov
equation from (X,u) to (X,u,4,,4) and when we employ the
expansion (24), we find that (21) becomes the infinite set of
coupled equations
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. 1 s =
i(wo+nQ.,)g, + ea)[u” (by'V) +7uL (X byVa)

a d
X u — U .+ €W 0:2 n
( * du, I du, )]g ( B2

+0n+lgn+1 +0n_lgn-1 +0n_2gn—2)

2

G ( o
= o} — | E u &
Whpe 91?2 [Kdl

_;_ul(E S 4 E_ 5~‘)) (25)

where
Q,, = |e|By/mc>0, (26)
E, = byE, (27)
E, = FiE, + §xbyE, (28)

and O, m#0 are first-order spatial differential operators
given in Ref. 9 whose specific form we do not need here. We
note, however, that they contain only spatial gradients of
perturbed quantities only in the directions perpendicular to
b, In direct analog with (27) and (28), we may define the ||
and 4+ components of any vector, in particular the current,
and

Jy =fu||ulg0du1| du, dg, (29)

J. =jufgi1 du, du, do. (30)

Examining the Vlasov equation in the form (25}, we see
that for € small only the n = — 1 component is significantly
affected by the fundamental cyclotron resonance. To leading
order in € we find, just as the nonresonant case,

2

go=l'(w:)“nEn %QG/Z (3D
and

2

from which we obtain [see (29) and (30)]

Jy = —il&),/0)E , (33)
and

Jo=—i[e/(0+Q.,)]E,. (34)

One can verify a posteriori that contributions to g, and g, ,
from g_, are smaller than the terms retained in (31) and
(32). Clearly the forms (33) and (34) are exactly the same
as given by the cold plasma conductivity tensor for the non-
resonant components.

To proceed, we perform a boundary layer analysis on
Eq. (25) with n = — 1 in the fundamental cyclotron reso-
nance region. We mix the methods of the geometrical optics
approximation in two space coordinates perpendicular to
VB together with a boundary layer stretching in the space
coordinate along VB. A central element of this formal analy-
sis is the assumption that the medium is approximately par-
allel stratlﬁed on the resonance surface. That is, we assume
that b0 and VB, , are nearly parallel on the resonance surface.
Further, since b and VB, change slowly in space, we may
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take 130 and VB, as approximately parallel for some number
of free space wavelengths in the neighborhood of the reso-
nance surface. We now start the introduction of our reso-
nance layer coordinates. For any given point in space (X,7,2)
we construct a straight line normal to the resonance surface
from that point to the resonance surface. Our two transverse
coordinates are the quantities {(X,9,Z) and 7 (%,p,Z) which
parametrize the point on the surface at the foot of the nor-
mal. We might take as the third coordinate (), — )/,
which clearly measures the distance along the normal, but in
view of (14) we see that (2., — w)/w is of order & in the
entire resonance layer. Thus, we introduce the stretched co-
ordinate £ by the definition

fb=Q,, — (35)

Hence, we may parametrize space by the coordinates &, 7,
and ¢. Provided the fundamental resonance surface be
smooth, the equilibrium quantities are functions of 8%, 87,
and 8¢ only. In this coordinate system & = 0 is the resonance
surface and |£ | ~ 1 constitutes the entire resonance layer re-
gion.

The Vlasov-Maxwell system (25) and (26) exhibits
singular behavior at fundamental resonance only in the coor-
dinate &, and it is well behaved in the coordinates £ and 7 in
which it is slowly varying. Thus, we can employ a geometri-
~al optics approximation in these coordinates and 4/
0§ —ikg,d /On— ik, ,and in view of the approximate parallel
stratification, a perpendicular wavenumber vector k, is well
defined. Hence k, , which is O(1), varies slowly in space and
is determined by a limiting procedure of geometrical optics
as one approaches resonance. When V, is replaced by ik, , we
have reduced our system to one space coordinate £ only. If
we differentiate (35), we find

(By V)Ewb = (by-VA,,),
and we finally define § precisely by
8="byVQ,/0>0, (36)

where 6(§,77) is evaluated at a particular point on the reso-

nance surface. We may now rewrite (25) withn = — 1in
the form
. dg_, 1 (w,ie) G
—ibég_ |+ ¢€u +—|—u E_
gt o+ \ M E-Gan

U, .= a a )
=€|— (PXb,Va (u — U —
3 (Y XboVa) | u, £ Il Ju,

— ik, (Bo'vﬂ) — iuy kg (130'?5)]g—1

+€(0% g, +0" 1g6+0"i{g ,+0= 18_3).
(37)
To leading order we may drop all terms on the right-hand
side, as these terms may be shown, a posteriori, to be smaller
than the terms retained. Thus, g_, is determined as the solu-
tion of the comparatively simple equation

w2\ 3G
i85 + eu = ——y (i) E_.
Le—1 e =5 2 “\ ) a2

For £ large the first term on the left-hand side of (38) domi-
nates, and we are back to the cold plasma conductivity ten-
sor. We shall consider only the cases /€ ~ 1 and §/€ > 1. For

Jg_, i

(38)
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&/¢€ small our analysis most likely does not apply.

It is convenient to make a last change of variables to
obtain a compact representation of the solution of (38). We
set

£ = (e/8)'7€, (39)

and we may write the unique causal solution of (38) as

1 (0 G (¢ dé

(€8)’g_, = ——( )———-f —=E_(£)

! 2 @ aul — wsgn(u) Y §

cesp(167=42)
Y

so that

2

a)pe 1 f G'(u)

= du, du, d
P (66)1/2 u au, u” ¢ u”

(34 o2 2

xf dgE,(g)exp<——’(§ =5 ))_ (40)
— oosgn(y, uH

We see from (33), (34), and (40) that near resonance J _ is
of order E w2, /w, J is of order E w5, /w, while J_ is of
order E_ [ (w},/@)/v/€8]. Thus, except when E_ is much
smaller than E, or E|, J_ is much larger than/_ and J .
We now turn to Maxwell’s equations. In the resonance
layer we replace V, by k, and we find easily to leading order

; 2
_’_(ﬁ)l/_‘?__(E k_+E_k,)

2 \e aE’
+(kt - DE; = (41)
172 a
( ) *(?) JE’ Ey+Es
2
( k2 )———k2 E ——— % _F_
(o + Q..)
(42)
2
_ (ﬁ) (i) E 4+ ,-k_(é_)“i E,
e/ \gg’ e o€
+E_(—1—kf—1)—ik2_E+: —Vo 3y
2 2 w

We have omitted in (41)—(43) all terms involving spatial
derivatives of equilibrium quantities.

The system (41)-(43) simplifies considerably in the
limit of small k,. Then Eq. (41) describes electron plasma
oscillations and Egs. (42) and (43) decouple to give the
ordinary mode and extraordinary mode, respectively,

2 2

(2)2 E++(1__&8__)E+=o
€/ 0E? oo+ Q)
(ordinary mode), (44a)

and

2 .
(5 ) IE_ +E_= — L (extraordinary mode).

gE"? w

(44b)

The coupling between ordinary and extraordinary
modes due to finite k&, as described by Eqs. (42) and (43)
have been investigated in the cold plasma limit in Ref. 2.
There it was shown that the modes remain uncoupled over a
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significant range of n, (n, 0.5 for a case of relevance to
EBT). Since the spatial structure of E and & is smoother in
the finite temperature theory than in cold plasma theory,
mode coupling is expected to remain unimportant for the
small values of &, of interest in this work. To this order,
ordinary mode waves propagating nearly parallel to the
magnetic field are completely unaffected by finite tempera-
ture. For arbitrary k, the system (41)—(43) has two distinct
forms depending on whether §/¢ is O(1) or large. In either
case we may solve (41) for £ to obtain

1 ./6\ 0
E =|—il—) —(k,E_+k_E_
! [21(6) 8§( + )

X(1—k? -l /%)~ (45)
When 8/¢ is large, we infer from (42) that
E, = —WE k_+E_k )k, , (46)

1~ ki — /0

which we may solve for £, and finally substitute into (43)
to obtain

2 2 2 -1
Gz (-0 -S3) e

47)
where
J(EN =iful du, du, d¢ G(”) dEE_(§)
— ocosgn(uy)
2
Xexp( (€7 —¢” )) (48)
Uy
and
2
LR (L)m Dpe (49)
€ 8/
so that
& = (w0}, /N2, Y2 /i, (50)

Note that Eq. (47) reduces to (44b) as k, —0. The condition
for the validity of the approximations is /€ large, or

@k /0, > €k, (51)

and « is a dimensionless constant of order 1.

When 8/€ is of order 1 in & or €, we may still employ
(45), but we must reexamine (42) and (43). We see that the
left-hand side of (43) is nominally of order 1 while the right-
hand side of (43) is of order (w3, /Q2,)E_/(€d) 172 Thus, in
order that both sides of (43) be of the same order of magni-
tude, we require that
8/e=L=0(1), @, /Q, =«Lves=0(e)=0().

(52)
Clearly (52) implies that the density is low. The system (42)
and (43), after substitution of (45), then reduces in lowest
order to

o G (-5 e ]
— == (CZV{(1t—=k2)E, +—Kk* E_
(1—k?2) (ag' PRy A

+ (4kT—1)E, —kIE_ =0, (33)
2
L (i) [_kz E. +(1_ikf)E_]
(1—k?1)\dg’ 2
—zk—E++ (%ki—l)E_: —kLJ(E), (54)
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and again J(&') is given by (48).

The system (53) and (54) has two distinct classes of
solutions corresponding to the usual ordinary (O) and ex-
traordinary (E) modes of propagation. For the O mode,
E, =0and £ isgivenby (53) [or (54)] with E_ = 0. For
the E mode, both £ and E_ are nonzero while E_ is given
by the result of eliminating E, from (53) and (54):

2
L(%) E_+(1—k)E_ = (1 —%kf)KLJ(?),

(55)
while E , is given by (53) once E _ is known. For either X or
O modes, E 1 is given by (45). The O mode is unaffected by
the resonance and we do not study it further.

In summary, in higher density systems E_ is given by
(47) while 6 and € are constrained by Egs. (50) and (51),
while in lower density systems E_ is given by (55) and the
physical constraints are (52).

lll. ANALYSIS OF THE INTEGRAL EQUATIONS

In this section we examine the integrodifferential equa-
tions for the high density, (47), and low density, (55), cases.
We show that the cold plasma model gives many, but not all,
of the properties of the solutions of (47) and (55). We show
that for the high density case a wave incident from the high
field side is totally absorbed. That is, no wave reflection oc-
curs at resonance: We present in Sec. IV the results of nu-
merical solutions of this system given electric field, energy
flux, and energy absorption profiles for different cases. For
the low density case we show that a wave incident from the
high field side suffers no wave reflection but is partially ab-
sorbed in and partially transmitted through the resonance
layer. The transmission coefficient is found to be exactly the
same as in the cold plasma model analysis of Budden tunnel-
ing.” These results are proved with some precision. In the
low density case and for waves incident from the low field
side, our method of analysis fails. But subject to far more
stringent hypotheses and in the spirit of a purely formal
proof, we show that the transmission coefficient for waves
incident from the low field side equals the transmission coef-
ficient in the case of high field side incidence. We are unable
to give any information on the reflection coefficient. The
equality of the two transmission coefficients is also a cold
plasma model result. Similar results on the transmission and
reflection coefficients were found at fundamental resonance
in a perpendicularly stratified medium.®

The method of proof we employ is an extension of the
techniques used in the case of a perpendicularly stratified
medium.® We recast the integrodifferential equation as an
integral equation in which we compare the solution to that in
the cold plasma model. We extend the equations into the
complex plane under the assumption that the solution is ex-
tendable in the complex plane in a particular way. Finally,
we show that within a particular class of functions the inte-
gral equation has a unique solution. Further, this solution
has an asymptotic expansion valid for large argument which
matches the solution of the problem in the cold plasma mod-
el. The method works only for waves incident from the high
field side as only this solution satisfies our hypotheses. This
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analysis shows us that for high field side wave incidence, no
wave is reflected and the transmitted wave (which exists
only in the low density case) is the same as in the cold plasma
model. In the low density case of low field side incidence, we
obtain the transmission coefficient from a generalized
Wronskian relation. We consider reduced distribution func-
tions which are analytic in % in appropriate domains and
which satisfy other hypotheses. A wide class of distribution
functions is included, but the assumption is restrictive and it
is critical. Without it we cannot obtain the results presented
here.

Before we proceed to the two distinct integrodifferential
equations, we obtain a few general properties of our system
applicable in either case. We recall that our equations pos-
sess solutions that are analytic in the domain Im{w} <0. In
view of the definition (35), we see that we may expect our
solutions to be analytic in Im{£} > 0. Since the solutions
must tend to zero as Im{w} > — o, itis tempting to assume
a comparable property of the solutions as Im{£} - + .
This property is, however, false. The parameter @ occurs in
the integrodifferential equation in other places besides the
combination (35). Thus, Im{w} - — « is not equivalent to
Im{£} > + o. Nonetheless our solutions are analytic in
Im{&} >0, and our method of proof applies only to those
solutions (if any) which tend to zero as Im{{} - + «. In
other problems® where we have calculated numerically those
solutions that are large asIm{£} —» + oo, we have found that
they are not approximately given by the cold plasma solu-
tions. Thus, we suspect that with the analysis and the Wrons-
kian relation we have extracted the maximum analytic infor-
mation possible.

We first examine the integral kernel (48) that occurs in
both problems. After we perform the #, and ¢ integrations
we may define a reduced distribution function

g(u”)ZJ‘G(u”’ul)uL du, dp =g(—uy) (56)
normalized and scaled so that
f g(uy )du, =f ujg(uy)du, = 1. (57)

The basic integral kernel then becomes

du; (*
= d5E_(&)
u — o sgn(u”)

X eXp(ﬁiz_—é‘z)),

u

J(§’)=M°E_=iJ g(u”

(58)

or

5’ P
MoE_=iJ dgE_(g)f du,(g(u”))

by

Xexp(————i(§ - §2)) + zf: dEE_(£)

by
o . 12 2
0 L b
(59)

On a purely formal basis, if we integrate by parts two times
with respect to £ we find
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© ; 2 _ g2
XJ u“g(uH )du“CXp<M>
0 u”

X — %Lw dé (ﬂiz/i) Lw u g(uy)du,

i@07§6)

u

Xexp( — (60)

For (60) to be valid we require only that E_(£ ") be suffi-
ciently differentiable that the function and its derivatives do
not grow too rapidly at infinity and that the integrands be
defined at all points on the path of integration. We shall
shortly extend the path of £ integration into the complex
plane and restrict the class of functions £_ (&) so as to assure
the validity of (60). We note in passing that the first term on
the right-hand side of (60) gives rise to the usual cold plasma
conductivity.

The properties of the integral kernel M are largely deter-
mined by the properties of the functions

I, (4) _J duj u |g(u“)exp( /1)
Y

for n = + 1. For a general smooth, but not necessarily ana-
lytic, distribution function 7, (1) possesses an analytic con-
tinuation into Im{A} > 0 and for large |4 | and n>1, and if
g(uy ) has N integrable derivatives, then

I, () |[<Ky/|A Y. (62)
The estimate (62) and analytic continuation into Im{1} > 0
are not adequate to complete our proof. For a Maxwellian
distribution, g(u) = (1/v/2m)exp( — luj), we may ob-
tain much stronger estimates. In this case it is easy to show
directly from (61) that for any 6 >0, I, (A1) is analytic in

(61)

larg A — 7/2| = |arg( —id)| <3n/4 =6 (63)
and in that sector and for |4 |>1,
|1, (1)| <alexp[ — B( — iA)*?]], (64)

where a and 8 are functions of # and 6. In fact, I, (1) is
analytic in a larger domain, but the estimates (63) and (64)
are adequate for our purposes. If we were to multiply the
Maxwellian by any given polynomial in (% ), (63) and (64)
would still hold with new values of @ and 5. In our proofs we
assume that (63) and (64) hold. With no great additional
effort we could consider distribution functions g(u),
which are analytic and which for large |u| satisfy
gluy ) ~p(uy)exp( — |uy|' *7), ¥>0,and p(u; ) a polyno-
mial in «; . In this case, 7, (1) would be analytic in a domain
larg( — il)| < (w/2) + & for some & > 0 and would satisfy
an estimate there of the form (64) with ( — i4)?/? replaced
by ( — i)+ D/r+D  We restrict ourselves to Maxwel-
lians and the estimates (63) and (64) although some limited
generalization is possible.

In terms of the function 7, (1) just introduced, if we
change the variable of integrationin (59) and (60) from £ to
x = & — £ and for simplicity of notation we replace £ ' by &,
we obtain
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FIG. 2. Contours Im{¢} =0 and Re{y} =0 in the complex o plane
b= a(o+2).

MPCE _ :iJﬂ dx E_(x + &) I_( —x* — 2x{)

+ o
—+—iJ- dxE_(x +O)I_,(x* + 2x{),
0

(65)

and after formal integration by parts,
MoE = —E(£)/(28)

b E_ (X+§)) X2 _2x

fw X1 e (—x &)
L)
+4
X[+ 2x8) ]~ (66)

If E_({) is analytic in the upper half-plane and grows no
faster than a polynomial in £ at infinity, then (65) provides
an analytic continuation of the operator M for complex ¢
and (65) is justified in Im{¢} > 0. We next address a change
in the path of x integration in (65) and (66).

We have examined the analytic functions 7,, (1), but we
see that in (65) and (66) the argument of 7,, (1) is the more
intricate entity 4+ (x? 4+ 2x£). In order to apply the estimate
(64), we must determine the argument of x* + 2x&. We start
by consideration of the simple analytic function

Y(o) =0(o+2), (67)
where ¢ = o, + io;. We see that on the curves o; = 0 and
o,=—1, Im{g}=0, while in the curves
(0, + N?—0?=1, Re{y} =0 (see Fig. 2). In Fig. 2
Im{¢} changes sign across a dotted line, while Re{y'}
changes sign across a solid line. It is also useful to describe
the curves arg /(o) = const, which we give in Fig. 3 for
Re{#} > — 1. The curves for Re{c} < — 1 are the mirror
image of those shown. The curves arg ¢ = const are all rec-
tangular hyperbolas given by the relation
1) = {tan[arg(¥) 1} (o7 — 07 + 20,).

It is easy to show that for any value of tan[arg(¢) ] the cor-
responding rectangular hyperbolas are asymptotic to lines
that make angles of arg(¢) + kmand arg(¢) + (k 4+ 1/2)7

with the real axis.
The argument of / | may be expressed as

20,(0, +
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Im{a}i

argy =3w/2 !

FIG. 3. Contours of arg(¢) = const in complex ¢ plane.

$(x.5) =52 [(x/8)* +2(x/0) ],
so that
argd(x,6) =2 arg{ +arg{¢(x/4)]. (68)

Thus, for any § = |{ |exp[i arg(£) ], in order to obtain the
curves of constant phase of ¢(x,£) in the complex x plane,
we add 2 arg({) to the phase of ¢ as given in Fig. 3 and we
rotate Fig. 3 in a positive, (counterclockwise) sense by an
angle equal to arg ¢. For ¢ real and positive, Fig. 3 applies.
For { pure imaginary, the corresponding figure (with only
critical curves shown) is given in Fig. 4.

For { real and negative, we show the critical lines of
constant phase in Fig. 5. In Figs. 3-5 we have adjusted the
phase such that for |x| large arg(¢) ~2 arg x.

We now return to the consideration of the integral ker-
nel given by (65).Sincel, | (4) is exponentially bounded by
(64) in the sector — 7/4 <arg A <57/4, it is easy to see
from Figs. 3-5 that for all £, Im{¢{} >0 it is possible to deform
the integrals in (65) into the upper half-plane and yet main-
tain the argument + 2x(x + ¢) in the appropriate sector. In
this process each integral in (65) or (66) must be treated
separately, and each integral yields a distinct contour of inte-
gration. Once we have moved the paths of integration into
the upper half-plane, it is then trivial to integrate by parts
twice and obtain (66) as the expression for the integral oper-
ator, where it is understood that the path of integration is in
the upper half-plane and on a contour in which

Im {x}

arge =7 /2

argep = 3m/2

FIG. 4. Contours of arg(¢) = const in complex x plane, ¢ is pure imagi-
nary.
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FIG. 5. Contours of arg(¢) = const in complex x plane, { real and negative.

arg] + x(x + 2£) ] is uniformly in the correct sector and the
path of integration is such that

e+ &>k S| (69)
Additionally, on the paths of integration we may also as-
sume

xCx 4 28) |2k x| [ .
Thus, on the paths of integration

i1 [<a exp(—B[x[*|5 27) (70)
for some k forall x and all &, | [>1.

We may finally recast our integrodifferential equation
in the form

E"+[a+b/(28)]E = bM,°E, (71)
where we have replaced E_ (£) by E(&) and we have defined

MoE =bE /(28) + M\ °E, (72)
and

a=(1—k2)(e/b), (73)

b (1= @ Lga (g @) (@ )eragsnn
Q. 2 0z Q.
(74a)

In the high density case, a is set to zero since €/8 tends to
zero, while in the low density case, (e/8) is O(1) and
w},/Q2, is small so that

b=(1_ik2) Ope (i)m
2 Yz \s

ceb

and each factor in (74b) is O(1). In (71)-(74) we have a
unified form for both the high density and low density cases.
We now examine (71) in Im{¢} 0.

Our proofs require that we distinguish the two cases and
we treat first the high density case in whicha = 0and > 0.
Two linearly independent solutions of u” + 5 /(2{)u =0
are '2H P (v2b¢) and ¢ V2H (P (v/2b¢). Clearly the
first solution is exponentially small in ¢ for 7>arg >0,
while the second solution is exponentially large there. We set

u (&) =& VPH (P (V2bg) (75a)

and

uy (&) =f5"2H P (v2b0), (75b)

where we select f'so that the Wronskian of #, and u, is 1. An

(69b)

(74b)
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integral equation equivalent to the differential equation (71)
is

E=u,() +bu,(&) f dE " 1 (E"YM O
[

—buz(g)f df’ u(§'YM°E. (76)
4

We show that the integral equation (76) is well defined and
that for large SE($) = 4, (£)[1 + 0(1) ]. We will then have
shown that a wave incident from the right-hand (high field)
side is totally absorbed, since u,({) describes such a wave.
Since u, (&) is exponentially large in the upper half-plane, it
is not at all obvious that the integrals in (76) are well de-
fined. We must select a domain in the upper half-plane, show
that for all £ there the equation is defined, and then show that
Picard iteration converges. The choice of proper paths of
integration in (66) and in (76) is essential in this activity.

We are finally ready to specify our class of functions.
Since we expect E(£) to behave asymptotically like u,(§),
we expect for (§) large

E(&) ~constv/'§ exp(iv'2b8).

The integral operator M, °F involves not only the function E
but also its first two derivatives. Thus, we define the function
norm

IEO| = sggg{nE(g)/vgl +[E"($)/5°"7

+ E"(E)/E3]|le V), (77)

where E({) is analytic in the upper half-plane and D is as yet
an unspecified subset of the upper half-plane. We prove con-
vergence of Picard iteration for (76) only for |{|>R for
some R. Further, we require that each point in D have the
two contours of integration in the definition of M, in D as
well. Thus, we have a domain whose shape is indicated in
Fig. 6. We finally pick R when we complete our estimates.

Suppose E(£) has finite norm according to (77), then,
for some C, >0,

[[MCE(§)1(e™ V) /v |

(e | rax

Xexp[|V2b(x + &) — V265 | — B |x[715 PP,
(78)

DOMAIN D

FIG. 6. Domain of definition of M, in complex £ plane. Domain consists of
all points P having two convergent contours of integration, each point of
which lies outside |§ |<R.
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If we set

X(X) = [V2b(x + &) — V26 | =B Ix[PI5 P2,
we see that

x(x) =265 [PV 14+ u— 1] = B'|ulI5 %),
where B'=B/V?2b and u=x/¢. Since
[v/1 4+ u — 1|<2]u|'/? we see that for |£ | large enough, or R
large enough, the integral in (78) exists and is clearly inde-
pendent of E, so that

[[ME() (e~ V) VEIKGIEN/IE 2 (T19)

We now return to the integral equation (76) and we select
the path of integration to be from £ to { + i« along a ray
parallel to the imaginary axis. It now follows that

GlE]|
|§ 13/2

< (80)

U dE " uy(£YMOEE")
[
and

CUIE | Iexp2iv/26)]
e

'J dg’ ul(gr)MloE(§’)|<
[
(81)

If we finally rewrite the integral equation (76) as
E(§) = u,(§) + NoE, (82)

then it follows trivially from the definitions and from (80)
and (81) that

|NoE | <CS|E |171¢ P (83)

Hence for R large enough that Cs/R */? < 1, N definesa con-
tractive mapping and (82) possesses a unique solution in the
class of functions of finite norm given by (77). The estimate
(83) further indicates that for |¢ | large the solution obeys

E) =u,(O[14+ 00|71, (84)

and (84) applies uniformly in D. Thus, we have shown that
the incoming wave is totally absorbed without any wave re-
flection.

We now turn to the low density case corresponding to
the integrodifferential equation given by (71) with both a
and b nonzero. Our aim is to recast this equation into a pure
integral equation of the form (76). To this end we must
select the functions u,(£) and u,(¢), which we take in this
case to be solutions of a special case of the confluent hyper-
geometric equation

u +la+b/2Ou=0,
for which two linearly independent solutions are (see Ref. 9)
u, = Wi#,v,2($2i\/a§),

where

w=1ib/(4va). (85)
Thus we take

uy =W, ,»(—=2Vab), (86)

for which the asymptotic expansion valid in Im{¢}>0is

u, = {exp[ival + plog( — 2ivaf) 11+ O(1/5) 1.
(87)

We note that the choice of functions here is different from
that in Ref. 9, since our functions are analytic in the upper
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half-plane instead of being analytic in the lower half-plane as
in Ref. 9. The solution u, is exponentially small as
Im{§ }- 4+ .

We take as the second solution

u,=gW_,.,Qivas), (88)

where g is chosen so that the Wronskian of #, and u, is 1. The
obvious range of validity of asymptotic expansions of
W, .. () is the sector |arg(z)| <7 — &, but the standard in-
tegral representations of these functions indicate that the
range of validity of these expansions is, in fact,
larg(z) | < 3m/2 — 8. The lines arg(z) = + 37/2 are Stokes
lines across which the expansions are discontinuous. Thus,
in Ogarg { <7 — ¢,

u, = glexp[ —ival — plog(2ival) 1} 1 + 0(1/8)].
(89)

If we duplicate the analysis found in Ref. 9 concerning ana-
Iytic continuation of Whittaker functions, we find that in 7/
24 8<argé<m

u, = glexp[ — ivag — p log(2ival) 131 + O(1/£)]

+ h{exp[ivad +ulog( — 2ival) 1} 1 + O(1/5)],
(90)

where the explicit value of 4 is of no interest here. Except in
the neighborhood of the negative real axis, the term propor-
tional to % is exponentially small compared with the first
term. On the negative real axis, both terms are comparable.

With u,(4) and u,(£) defined by (86) and (88), we
may rewrite Eq. (71) in the form (76). For functions analyt-
ic in the upper half-plane, we define

IE || = sup{[|E(2)| + |E"(£)|
feD

+ [E"(5)] lexp( —ivad) |1} (1)
We can now easily parallel the first proof. Corresponding to
(79), we now find, far more easily,

|(M°E)e ™V |<G,||E|I/1S 12, (92)
so that
fw d§'M,°Eu2(§’);<E3”E” (93)
¢ &
and
ClE || || (94)

<

2

f d&' M oEu (£")
c < |

where (93) and (94) correspond to (80) and (81). The
integral operator N for this problem, see (92), then satisfies
the estimates

[VeE||<es|E]1/]5 |- (95)

Thus, for R > ¢5, N generates a contractive mapping. Within
the class of functions with finite norm according to (91), the
integrodifferential equation has a unique solution and for
this solution

E=u,(O)[1+0(1/1ED]. (96)
Now the solution &, corresponds to a wave incident from the
high field side with no reflected wave and with transmitted

amplitude T = exp[ — br/(2v/a)], exactly as in cold plas-
ma theory and geometrical optics. The energy absorption is
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1 — T, and the problem is essentially what one would find in
a cold plasma model.

We next turn to the case of waves incident from the low
field side. We cannot apply the previous analysis since the
solution must have the asymptotic form of u,, which is ex-
ponentially large in the upper halif-plane. In this case we
apply a Wronskian relation, and we work on the real axis
only. We must hypothesize rather strong conditions on the
solutions. We believe the hypotheses are reasonable, but we
cannot be sure that the hypotheses hold. For two solutions of
the integrodifferential equation (71), E(£) and F(£), we
hypothesize

I= f d¢ F(E)MOE(() 97)

exists and may be treated without concern for convergence
problems. We may write

3
MoE:if dx E(x)I_(£%—x%)
—&

+ iJw dx E(x)I_,(x* —¢£?),
9

and it is then trivial to show that

I= f dt E(¢)MOF(E). (98)

Since we have the estimate on M, (92) it is quite likely that
the interchange of integrations implied to obtain (98) is val-
id. If we return to the differential equation (71), we readily
conclude

[FIOYE(§) —F'(HYEL)]
=F({YMCE() — E(§)MOF({)
so that

lim [F(A)E'(4) — F'(4)E(4) — F(B)E'(B)
A—

B- —

+ F'(BY)E(B)] =0. (99)

If we now assume that there is a solution of (71) which as
&— — o has the expansion

F(¢) = {expl — iv/ag — plog(2ivad) 1} 1+ 0(1/[¢ )]
+ R, {exp[iv/af + plog(2iv/a) |}

X [1+01/1£])] (100)
while for { —» +
F(&) =T, {expl — ival —pulog(2ivat) 1}
X[+ 0/1E N1, (101)

and if we apply (99) with E({) as the solution previously
obtained for the high field side incidence problem, we con-
clude

T, =T, (102)
where 7, is the transmission coefficient for low field side
incident waves. We are unable to offer any information con-
cerning R, , which we believe must be calculated numerical-
ly.
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IV. NUMERICAL COMPUTATION OF STRONGLY
DAMPED WAVES IN DENSE PLASMAS

In the case of extraordinary mode waves propagating
nearly parallel to the magnetic field or for finite &, with €
and & satisfying the conditions of Eq. (49), the equation for
E _ reduces to the simple form

Jd’E

a2
where J_({) is given by Eq. (48) and « is given in (49).
When the unperturbed distribution is Maxwellian, G(u)

= exp( — u?)/(7)*'?, the velocity space integrals can be
performed and the plasma current expressed as a convolu-
tion integral

4
KJ_ (&) = f dE E(OH(L — £7)

=xJ_(§), (103)

+f dE B H(E>— ¢, (104)
9 )
where the Green’s function H(x) is

Hay = | Bomw-in, (105)

o u
The first integral in Eq. (104) arises from particles stream-
ing from low field to high field [ie., | <0 in Eq. (48)]
whereas the second comes from # > 0.

Before presenting the numerical solution of Eq. (103),
it is of interest to examine the structure of H(z) and to com-
pare the nonlocal plasma response given by (104) to that
predicted by local, warm plasma theory. Figure 7 shows the
real and imaginary parts of H(x). At x = O there is a loga-
rithmic singularity [H(x)~ —Inx—3y/2 —7i/2 as
x—0], and for large x there is an asymptotic expansion of the
form

H(x)~exp[ —2'7(1 +v/30)x] (4 /ix)'",
which is exponentially damped and rapidly oscillating for
large x. Thus the nonlocal contribution to the current is neg-
ligible for |£ > — £ ?|>10. The real part of H gives rise to the

dissipative part of the plasma current, the part in phase with
E_. From Fig. 7 we see that Re{H} is singular near £ = ¢

0.8 T

0.4 —

-04

H (x)

-0.8

B RRREE
|

e I
4 8 12 16 20

FIG. 7. Real part (solid curve) and imaginary part (dashed curve) of the
Green’s function H(x), Eq. (105).
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FIG. 8. Real part of nonlocal current profile (solid curve) and local current
profile for a specified undamped plane wave electric field.

and so the dissipation is approximately local. However, since
Re{H} oscillates negative in the approximate range
0.5 <x < 5.0, it is possible to have local negative dissipation
for some electric field profiles. This is actually found to oc-
cur in the numerical solutions.

The perturbed plasma current as predicted by local,
warm plasma theory in the present scaled variables is ob-
tained by replacing 8 /9¢ by ik and treating ¢ as a constant

1.4 l T |

FIG. 9. Power dissipation profile £, = Re{E *-J} for nonlocal current re-
sponse (solid curve) and local current response. £_ is a specified un-
damped plane wave, k = — 2.
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parameter in Eq. (48). For a Maxwellian distribution, one
obtains

Jioea (§) = K(WT/OZ [ — ((/VE_(E)],  (106)

where Z(x) is the plasma dispersion function. We now cal-
culate the perturbed current for an assumed incident wave
field of the form

0, ¢£<0,

E_(§)= {e,.zg’ £50.
Figure 8 shows the real parts of J({) (solid) and J ., (£)
(dashed) for an undamped plane wave incident from large §,
k, = 1.0, k; = 0.0. At large values of &, £ Z 8, both profiles
agree with the cold plasma result, Joc E_(£)/¢. For £27
there is a small difference, primarily a phase shift with J(&)
lagging J ... . However, if one plots the profile of power dis-
sipation, Pj, « Re{E*-J}, shown in Fig. 9, a much more sig-
nificant difference is seen. Initially the dissipation is nega-
tive, 4.5 S £ S 7, then the nonlocal dissipation increases more
rapidly than the prediction of local theory. If one takes the
incident wave to be damped, these features of negative dissi-
pation followed by rapid positive dissipation are increased.
This is shown in Fig. 10, where k was taken to be
k = — 2 — 0.5i. Although the complex k was included in
Eq. (106), the shape of Pp 1,.. (&) is almost unchanged by
including damping. We conclude therefore that nonlocal ef-
fects can be important in determining the perturbed current
and that these nonlocal effects are sensitive to the wave field
profile in the resonance region.

The numerical solution of the system (103)-(105) has
been carried out in a previous work” where the same system
appeared in the investigation of ion cyclotron heating in to-
kamaks. The numerical methods of solution are discussed in
detail in that reference. Figure 11 shows the real part of
E_ (&) (solid) and, for comparison, the real part of the solu-
tion of the cold plasma equation [Eq. (4) ] for the particular

(107)

2.0 T T

0.4 —

o | | |

FIG. 10. Similar to Fig. 9 except electric field is specified to be a damped
plane wave, k = —2 — 0.2i.
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FIG. 11. Computed electric field profile E_, real part (solid curve), imagi-
nary part (dashed curve) versus scaled length along the field { when
k = 21. Also shown are the scales in Q. /@ and Z /A, for the parameter
n, =2x10%/em? T, =300eV, L = 12 cm.

case K = 21. We remind the reader that in the scaled vari-
ables

& =ky(e/8)%s = (w/v,L)"s, (108)

where s is the dimensional distance along the field from the
resonance layer and for the simple case £, =0,
2

K ®pe Ve _ Dpe (U_*’)m(koL)wz.
c

0)2 53/2 602

(109)

A set of parameters of interest to TMX-U or EBT-S
for which K=21 is a reasonable value is F =28
GHz, n, =2X10%/cm® (02, /0*=0.2), T, =300 eV
(e =0.034), and L = 12 cm. Figure 11 is identical to Fig.
1(b) of Ref. 8 except that it is plotted in our present scaled
variables and also in terms of the free space wavelengths,
Ao = 1.07 cm, for the above set of plasma parameters. The
warm plasma and cold plasma results are in agreement for
large &, £=8.0. However, for { =8 the amplitude of the
warm plasma decreases and a phase shift develops with the
wavelengths of the warm plasma solution decreasing more
rapidly than the cold plasma results. Of course this figure
also contains the results for other densities, temperatures,
and scale lengths subject to the constraint X = 21 in Eq.
(109) and rescaling of £, Eq. (108). Results for smaller val-
ues of K are given in Ref. 8 although when scaled to the
electron cyclotron range of frequencies the densities and
temperatures are too small to be of fusion interest.

Figure 12 shows the electromagnetic Poynting flux ob-
tained from Fig. 11 and the flux obtained from warm plasma,
local WK B theory by integrating k; [Egs. (8) and (9)]. We
notice that the Poynting flux for the nonlocal calculation
initially increases as might be anticipated from the region of
negative Re{H (x)} seen in Fig. 7 and the region of negative
dissipation seen in Figs. 8 and 9. The absorption predicted by
the nonlocal, full wave theory is more rapid than that pre-
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FIG. 12. Profiles of electromagnetic power flux obtained from computed
full wave electric field and from local WKB calculations.

dicted by WKB theory. The half-power point occurs at
about 30% higher magnetic field in the full wave theory.

V. DISCUSSION

In this paper we have studied the absorption of extraor-
dinary mode waves propagating nearly along the magnetic
field where the magnetic geometry has VB nearly parallel to
B. In such geometry E_ is not shielded out by the large
electron conductivity, and damping is very strong. In order
to account for the strong damping and the fact that no well
defined & | exists, an integrodifferential system is solved. As-
suming & = A,/L and € = vy, /c to be small parameters con-
fines the resonance interaction to a thin boundary layer near
the 1., = w surface within which the equations can be great-
ly simplified. In particular, the ordering used permits the v,
dependence to be separated reducing the problem to one in
v, and ¢. It should be noted that in this ordering the vari-
ation of particle v due to uVB forces is neglected [these
would enter through order € terms on the right side of Eq.
(37)]. There is an additional boundary layer at v, =0,
& = 0, whereupon the first two terms on the left of Eq. (37)
vanish. This is of no consequence for the cases considered
here since the wave energy is effectively gone by the point
¢ = 0. Calculations of quasilinear diffusion and energy gain
for single particles (such as given by Howard'?) have shown
that uVB force is important for single particles mirroring
near the resonance layer. However, our calculations show
that their contribution to the plasma current does not affect
the wave propagation, at least when the distribution func-
tion is Maxwellian. Of course in a strongly heated plasma
with a non-Maxwellian group of energetic particles turning
near resonance, this may no longer be true.

The analytic calculations presented in Sec. ITI show that
the complete wave absorption seen in cold plasma theory
and in warm plasma WKB theory for sufficiently dense plas-
mas also holds kinetically for a wide class of smooth equilib-
rium distribution functions. Also for low density plasmas for
which there can be some transmission through the reso-
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nance, the transmission coeflicients for both high and low
field incidence are correctly given by the cold plasma results.

In order to obtain profiles of £_ and power absorption,
it is necessary to solve the integrodifferential system numeri-
cally. Again, the calculations presented in Sec. IV confirm
the absence of a reflected wave and the complete absorption
of the incident power. For the plasma parameters used in the
example presented, the nonlocally calculated power deposi-
tion profile differs quantitatively from a local WKB calcula-
tion. An interesting feature shown in Figs. 10 and 11 is the
negative absorption as the wave first enters the resonance
region. This is to be expected from the form of the Green’s
function (Fig. 8). Physically this is the result of particles
with v > 0 having the correct phase relation to return ener-
gy to the wave at large £, which had been absorbed from the
wave in the region of strong interaction. A similar effect is
seen in other situations where the wave carries a kinetic ener-
gy flux. An example is in minority ion cyclotron heating in
perpendicularly stratified plasmas.'"!?

In Fig. 11 the absorption is seen to be somewhat more
rapid than is predicted by the local WKB theory. Although
there is probably little practical consequence of whether the
power is absorbed spatially at O, /o = 1.07 vs 13, through
the Doppler-shifted resonance condition, Eq. (10), this
translates into a difference in the location in velocity space at
which the wave energy is deposited. For example, in the
WKB calculation the half-power point occurs at =3,
where Q,, /0 ~1.075 and k| =~10.5 cm™". At this location
resonant particles have v /vy, = (0 — Q.. )/kyvy, of
~1.23, whereas in the full wave calculation the half-power
point occurs at {~4.6, where Q,/©~2.0 and k| =8.6
cm™'. Thus WKB theory predicts half the power going to
particles having energy above 1.57, while the full wave the-
ory gives half the power to particles above 47, . The velocity
space behavior of the quasilinear diffusion operator can be
very crucial depending on the location of loss cones or the
neoclassical confinement characteristics of various regions
of velocity space. Work is under way to evaluate the quasilin-
ear operator for the self-consistent electric field obtained
here. However, because of the strong damping and the rapid
variation of effective k | , the usual stationary phase methods
used to evaluate the quasilinear operator in spatially varying
plasmas cannot be applied.
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